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Abstract: The endgame stage of Go presents a unique challenge for sci-

entific research. Contrary to previous stages, in the endgame the key to a 
successful analysis is board decomposition into smaller, independent local 
positions. Go players typically analyze these positions separately and prior-

itize moves based on their value. In this paper, I introduce a novel program 
that automates this decomposition-based analysis for the endgame stage of 
Go. 

AlphaZero has revolutionized Computer Go, by applying a generic 
move-selection mechanism, based on neural network judgments and the 
MCTS search algorithm. However, it does not specifically address the com-

plexity of endgame in the aforementioned manner. On the other hand, by 
leveraging the decomposition-based analysis, my program reaches decisions 
in the endgame with relatively little computation. Additionally, it offers in-

sights for Go practitioners by providing accurate move value evaluations.
Notable prior work on automated endgame analysis was done by Martin 
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Müller (1995). His program Explorer checked all possible variations in 
every undecided position and aggregated the results based on an algorithm 
inspired by the Combinatorial Game Theory (CGT). However, due to the 
exponential growth of the number of variations, Explorer’s application was 
limited to small, tightly bounded local positions.

In contrast, my program leverages a neural network to predict optimal 
local moves, dramatically reducing the number of variations that need to 
be explored. Provided that the neural network’s predictions are correct, the 
program can accurately evaluate move values by considering relatively few 
variations, just like human Go experts do. Thanks to this approach, it is the 
first program capable of analyzing large, unbounded local positions, which 
are commonly encountered in real games.

The neural network was fine-tuned from a pre-trained AlphaZero reim-

plementation on the task of optimal local move prediction. Training data 
was gathered from KataGo self-play games, utilizing KataGo’s network to 
perform board decomposition.

Keywords: �AlphaZero, Fine-Tuning, Combinatorial Game Theory, Tem-

perature, Move Values



Combinatorial Game Theory Meets Deep Learning:Efficient Endgame Analysis in Go- 19 -

I. Introduction

1. Mathematical approach to endgame

Positional analysis in the endgame stage of Go differs from the previous 
stages of the game. In earlier stages, a Go player’s judgment about which 
moves are the largest on the board mainly depends on a player’s intuition 
which might be difficult to formalize. On the other hand, in endgame, Go 
players assess move values using a principled approach which leverages cer-

tain arithmetical calculations. Prerequisite of this method is understanding 
what variations could be expected in a given local position. A player would 
read such variations until the territory borders are fixed, calculate the final 
local score at the end of each variation, and aggregate these results to arrive 
at a precise number denoting the value of the first move in these variations. 
The method is explained e.g. in the book “Rational Endgame” (Törmänen, 
2019). While a move with the highest value is not guaranteed to be the opti-

mal play, choosing moves based on their values is a common heuristic used 
by Go players.

This kind of analysis is possible in endgame because at this stage, the 
board is already mostly split between White’s and Black’s territories. Territo-

ry borders are not fixed only in a few local regions of the board. In general, 
situations in each such area could be analyzed independently of each other, 
because no matter which variation is played out in one region, it does not af-

fect which moves are correct in other regions1). Moreover, these undecided 
areas of the board have limited size which allows an experienced player to 
easily find all correct local variations.

1) �A notable exception for this general rule are ko fights that introduce interactions be-
tween different parts of the board.
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These properties of Go endgames have inspired mathematicians to devel-

op a new branch of mathematics (Conway, 1976, Prologue), called Combi-

natorial Game Theory (CGT). It is an abstract theory applicable to various 
games (e.g. Nim, Hackenbush) that could be viewed as sums of simpler 
games, just like a whole-board endgame position can be viewed as a sum of 
local positions. When it comes to Go, the most important tool provided by 
CGT is the notion of temperature. Temperature can be described as a mea-

sure of urgency of playing in a specific position. The temperature of a local 
position is a number equal to the value of the best move available in that po-

sition. The mathematical theory arrives at the same numbers as the classical 
method used by Go players, despite using a different algorithm for calculat-

ing them. CGT also provides a lot of new results that were not known to Go 
players, such as a detailed treatment of infinitesimal values (Berlekamp and 
Wolfe, 1994), or the Orthodox Accounting Theorem (Siegel, 2013, ch. VII, 
Theorem 2.9) which finds the maximal loss that a player might incur under 
orthodox play, i.e. when basing their decisions in endgame on move values. 
Another result (Wolfe, 2002) shows that finding an optimal line of play for 
a Go endgame position (and proving it optimal) is a problem of infeasible 
complexity. These findings prove that orthodox play is a good heuristic - a 
fact which Go players had understood intuitively. 

The existence of a solid mathematical theory describing exact algorithms 
that could aid endgame calculations inspires a natural question whether 
these algorithms can be implemented in a computer program. Can a program 
like AlphaGo, or any other, tell us the value of a move in the endgame? Un-

fortunately, solutions existing to date are not well suited for providing such 

information.
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2. AlphaZero mode of operation

In 2016, for the first time a world champion in Go was beaten by a com-

puter program, AlphaGo. A follow-up paper of the AlphaGo creators de-

scribed AlphaZero (Silver et al., 2017) - a neat machine learning solution 
allowing to build an agent that could master Go, or any other game like 
chess or shogi. By now, many programs inspired by that paper have emerged 
and have been made publicly available, presenting the Go community with 
invaluable teaching tools. 

While AlphaZero can point out what moves are best on the board in any 
given whole-board position and tell which player is ahead, it cannot provide 
all information which a Go player might be interested in during a game 
analysis. Several programs inspired by AlphaZero offer also other clues. 
Notably, KataGo (Wu, 2020) predicts the ownership for each intersection 
of the board and the lead of a player measured in points. Attempts were 
made (Frejlak, 2020) to leverage this information to the goal of estimating 
move values in the endgame. However, these estimates could not be made 
accurate. Generally, local temperature calculation cannot be boiled down to 
comparison of global scores in a given whole-board position.    

AlphaZero-based programs cannot be successfully used for calculating 
move values because their analysis is inherently global. AlphaZero is trained 
to predict best moves on the whole board, maximizing its winning chances. 
This characteristic contributes to AlphaZero’s extremely high level of play. 
At the same time, however, it makes it difficult to perform any analyses fo-

cused on specific parts of the board.
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3. AI estimating move values

A program that could estimate move values in endgame would be valuable 
for the Go community. It could provide more explainable clues for Go prac-

titioners than current solutions do. Moreover, if the program is very good at 
its task, it could potentially achieve higher playing strength in endgame than 
AlphaZero. An interesting open question is whether a perfect agent follow-

ing the orthodox play heuristic would perform better than AlphaZero. 
The current work continues on my master’s thesis (Frejlak 2024) and im-

proves on its results. Better results are achieved thanks to more sophisticated 
training data construction which I discuss in Section IV.

II. Related work

There is one famous work done on a similar topic as the current paper. 
Martin Müller (1995) in his PhD dissertation presented Explorer, a program 
which leveraged Combinatorial Game Theory to search for optimal play. Ex-

plorer splits the board into sure territories and undecided positions, checks 
all possible variations in every position, and aggregates the results to find 
the best move on the board.

Presented approach had two major limitations: 
The number of possible local variations grows exponentially with the size 

of the position. Because of that, analysis could be performed only for po-

sitions with no more than ten empty intersections. Larger positions would 
require too much computation. 

Board segmentation was performed with an algorithm proving that stones 
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surrounding territories are impossible to kill, and territory areas are too 
small for a successful invasion. Therefore, only board positions with very 
solid shapes could be analyzed. 

Figure 1. Board decomposition performed by Explorer

Figure 1 is an example taken from the original work of a position that 
could be analyzed by Explorer. It looks quite artificial with strong walls of 
stones and each alive group having clear two eyes. Undecided positions be-

tween these walls have clear boundaries and are of limited size.
While Explorer was very efficient in finding optimal play when compared 

with a brute-force approach, its applicability could not be extended to posi-

tions taken from actual games.

III. Goal of this work

The goal of Explorer was finding an optimal line of play in the endgame. 
On the other hand, the goal of this work is facilitating orthodox play. Below, 
I explain the difference between the two, giving a rationale for my choice. I 
also take this opportunity to clarify an important technical aspect of the cur-
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rent work which is related to the notion of forcing moves (sente).

1. Canonical forms vs. temperature theory

Analysis of a local endgame position could leverage Combinatorial Game 
Theory in two ways.

Once all possible variations were checked, the resultant variation tree can 
be simplified by getting rid of all moves which are surely no better than oth-

er plays. An example is shown on Figure 2. In no game can Black’s move at 
B be better than the move at A. When we remove all tree branches contain-

ing such bad moves, the resultant tree is called a canonical form. 
In Explorer, a canonical form was found for the variation tree of every lo-

cal position, which simplified further analysis without the risk that we miss 
any move belonging to the optimal line of play. 

Another CGT perspective is provided by the temperature theory. From 
this point of view, in a canonical form there are still many variations not 
worth considering. Many moves might theoretically be good in unusual cir-

cumstances, but in most cases will be worse than choosing another option. 
Figure 3 shows a position in which Black’s move at A in most games will 

be the correct one. It gains at least 7 points and leaves a continuation worth 
another 10 points. The move value is 12 points. On the other hand, Black’s 
move at B is worth 8 points. It directly seizes 8 points but leaves no continu-

ation. 
The canonical form will retain variations starting with B. It is possible for 

this move to be correct, for example, if this is the only undecided position 
present on the board. However, this is unlikely in an actual game. Tempera-

ture theory provides a formalism that allows to tell that under normal cir-
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cumstances the move at B does not need to be considered.

Figure 2. Black’s move at B is al-
ways worse than A

Figure 3. Black’s move at B is 
worse than A in most situations

2. Forcing moves in light of CGT

In practice, temperature theory proves much more useful for Go end-

games than analysis based on canonical forms. The reason is related to the 
notion of forcing moves.

In CGT, a move is called forcing if it raises the local temperature. In Go 
terms, one would say that a move is sente if its continuation is worth at least 
twice more than what the move gains for sure. An orthodox play strategy 
(Berlekamp 1996) advises to always answer, if the opponent has just played 
a forcing move. In other cases, one should play in the local position with the 
highest temperature.

From the temperature theory’s point of view, one does not need to consid-
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er variations that could happen if the opponent gets the continuation of their 
sente move. Such a situation will never happen under orthodox play. How-

ever, continuations of sente moves need to be retained in a canonical form. 
It might happen that the optimal line of play involves not answering to an 
opponent’s sente move but e.g. playing one’s own sente move in another part 
of the board.

In actual games, forcing moves are ubiquitous. This is because an effi-

cient way of building territories most often comes with leaving little holes 
in one’s walls. Building solid walls with all stones connected is usually too 
slow a way of development on the go board.

Figure 4 shows a position which might happen after a common joseki, in 
which Black stones surrounding the territory are not yet connected. White 
might try to enter Black’s area with a move at A. If then White gets to con-

tinue with B, Black’s territory will be destroyed. The threat is very big, so 
the move at A counts as sente. In most cases, Black is going to answer, con-

solidating the territory border.
Checking only two variations: the aforementioned one, and the one in 

which Black plays first, putting a stone at A, is enough for a successful 
thermographic analysis of the position. However, to find a canonical form, 
one needs to consider variations after White’s continuation at B. As White 
enters Black’s large territory, there are suddenly myriads of new variations 
to consider, and the whole analysis becomes infeasible. Noteworthy, on the 
presented example, there is also another undecided local position which is 
marked with crosses. If we start to consider variations after White’s intru-

sion into Black’s territory, we will not be allowed to neglect them when an-

alyzing this other local position. It means that the whole area on the top side 
will need to be considered as one huge local position.
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The example presented above shows that analysis leveraging canonical 
forms is impractical for positions taken from actual games. Because of holes 
which players tend to leave in their walls, board decomposition becomes 
impossible. Most often, the whole board would need to be considered as one 
local position, which completely defeats the purpose of deploying CGT, not 
allowing to anyhow simplify the problem of finding correct moves in the 
endgame.

In contrast, endgame analysis from the perspective of temperature theory 
allows decomposing the board into small local positions, even though their 
borders are not clearly marked. Most often, moves that could lead to a dra-

matic growth of variations number can be easily recognized by a Go player 
as sente.

Figure 4. Two local positions which can be considered independent in the 
light of temperature theory but not from the perspective of canonical forms
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3. Chosen approach

The goal of this work is designing a program that facilitates analysis 
grounded in temperature theory. My approach could be compared with the 
one used in Explorer. Just like Explorer, my program constructs a variation 
tree for a given local position. However, only moves relevant for temperature 
calculations are added to the tree. This makes the solution less computation-

ally expensive, allows to analyze larger local positions, and eliminates the 
necessity of the position to be bounded by solid walls. 

To find relevant moves in each tree node, I will use a neural network. 
Another network is going to assess local scores in terminal positions. The 
results will be then aggregated by an algorithm grounded in CGT. 

The program’s mode of operation will resemble an analysis performed by 
an experienced player. Player’s intuition about which moves are worth con-

sidering will be mimicked by a neural network.

IV. Methods

1. Information to be predicted by the network 

To allow construction of a local variation tree, the network needs to pre-

dict Black’s and White’s correct moves in the given position. In many cases, 
we will add both a move of Black and a move of White to the tree. However, 
if a forcing move has just been played, we should only add the opponent’s 
answer to the tree. There are several ways in which a network can provide us 
with such information.
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The approach which I took is making the network output a single tensor 
of 2 * 19 * 19 + 1 = 723 numbers. These numbers represent probabilities 
predicted by the network of each move being correct. The first 361 num-

bers represent probabilities of White’s moves, the next 361 numbers - prob-

abilities of Black’s moves. At the end, I include one more number which 
represents the probability that the position is terminal, and no one will play 
there anymore. 

This design choice stands in contrast with the output of AlphaZero net-

work. In my case, 723 numbers are predicted, whereas in AlphaZero it was 
only 361 + 1 = 362 numbers (the last number representing pass). AlphaZero 
considers options only for the player at turn. Because of that, it is impossible 
to use AlphaZero’s output to tell sente from gote. On the other hand, if my 
network predicts high probabilities only for one of the colors, it will mean 
that the last move was sente. 

The probabilit ies should be 
predicted on the basis of not only 
the current board position, but 
also information of a few previous 
moves played in the current local 
position. Sometimes, whether a 
move should be treated as sente or 
not, depends on the whole local 
sequence. An example on Figure 5 
shows a situation in which Black’s 
move at 3 saves their six stones, 
while threatening to capture three 
White’s stones. If we only take into 

Figure 5. Whether Black’s move at 
3 shall be considered sente depends 
on the full local sequence
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account Black’s last move, it should be considered gote, as the continuation 
is significantly smaller than what the move gains. However, in the context of 
the previous 1 – 2 exchange, we realize that in fact, Black’s move is sente.

2. Model architecture

Learning Go is a difficult task, not only for humans but also for machine 
learning models. AlphaZero network needs to be trained for many days on a 
strong computer to achieve a super-human level. As I did not have sufficient 
resources to train such a model myself, I needed to resort to a technique 
called fine-tuning. 

Fine-tuning is a common technique in machine learning in which one 
takes a network which was trained for a long period of time on a huge data-

set (probably by a rich company) and tweaks it for a specific task at hand. 
As the pre-trained network has seen a lot of data, it has been able to acquire 
a profound understanding of a given domain. It is therefore much cheaper to 
fine-tune to another task related to that domain than training a network from 
scratch. 

I decided to make use of a pre-trained model based on an AlphaZero 
architecture found on GitHub (Nguyen, 2022). The model is a clean reim-

plementation of the solution described in the original paper, despite being 
smaller (having fewer residual blocks). 

The model’s input is eight most recent board positions encoded as 19x19 
matrices of 1’s, 0’s and -1’s. An additional, 9th matrix is filled with 1’s if 
Black is at turn, and with -1’s otherwise. Originally, in AlphaZero these 
should be the most recent whole-board positions, taken from the game. In 
my fine-tuned network, these are positions which appeared in a local se-
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quence. The sequence I choose might have less than eight moves, in which 
case I replicate the earliest position in this sequence to match the required 
size of the input tensor. 

The input is processed by a backbone consisting of five residual blocks, 
using 3x3 convolution and 128 hidden channels. In AlphaZero, the output 
of the last residual block is fed into two network heads which comprise of a 
1x1 convolution, followed by one or two fully-connected layers. One head 
predicts best moves on the board, and the other - winning chances. 

My model does not need these two heads, and so I replaced them with 
a new head which predicts correct local moves. The new head follows the 
architecture of the original policy head. As an input, the head accepts the 
output of the backbone’s last residual block and a matrix representing an 
undecided local position. The matrix has 1’s at cells corresponding to the 
local position, and 0’s everywhere else. As the output, it yields 723 numbers 
summing to 1, which represent probabilities of Black and White moves be-

ing correct plays in the local position. 

3. Training data construction

Preparation of training data for the network was the largest part of the 
project. There are no big datasets of local positions with marked correct 
moves. Creating such a dataset by hand would be too much work, given that 
neural networks require many thousands of examples for training. Luckily, 
preparing a good dataset is possible with publicly available tools. 

I depict the data collection procedure on Figures from 6 to 9. As a source 
of endgame positions, I took self-play games of KataGo2). I navigated to a 

2) They are available at https://katagoarchive.org/g170/selfplay/index.html
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late stage of the game when roughly 80% of all moves were played. Then, 
I segmented a board into secure territories of Black’s and White’s and unde-

cided local positions using KataGo network. 
One of KataGo’s outputs is ownership prediction for each intersection. 

Here, -1 denotes certainty of territory being White’s, and 1 - of being 
Black’s. I used thresholds of -0.9 and 0.9. Everything between these two 
numbers was interpreted as not full certainty and judged as an intersection 
of undecided ownership. Next, I grouped such intersections into connected 
components, and labeled each component as a distinct undecided local posi-

tion. 
Such a procedure does not guarantee that the detected local positions are 

independent of each other. A closer look at two pairs of local positions in the 
upper left quarter of the board on Figure 6 shows far distance dependencies 
between them. A move in one such position might make a move in anoth-

er one sente. The presence of such situations in selected data introduces 
noise to training. However, one might expect that the effect will not be very 
strong, and should not bias the network too much towards any specific type 
of incorrect predictions.

Additionally, I check the ownership map for the final position in the 
game, and blacklist all intersections which in the endgame seemed to belong 
to a secure territory of one color, but ended up seized by the other color. 
This blacklisting serves later to avoid teaching the network about moves 
which most probably did not follow orthodox play and were played because 
of far-distant relationships on the board, such as ko fights. 

Furthermore, I find a complete segmentation of the board into regions 
around the labeled local positions (and the blacklisted area of changing own-

ership). For every intersection, I calculate its distance to the nearest labeled 
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local position using the BFS algorithm. 

Figure 6. Whole-board endgame 
position taken from a KataGo self-

play game

Figure 7. Ownership map predicted 
by KataGo

Figure 8. Discretized ownership 
map

Figure 9. Connected components 
of undecided ownership labeled as 

different local positions

Next, I look at all moves starting from the chosen endgame position un-

til the end of the game, and assign each move to the region of the complete 
segmentation in which it was played. This way, for every region I obtain a 
local sequence of moves. Commonly, all moves played within such a region 
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should be related to the corresponding labeled local position. In these se-

quences, moves are not necessarily played alternately by Black and White. 
Finally, for each move of a local sequence, I set the positions which ap-

peared in the sequence until this move as an input to the network and the 
next move (or lack thereof) - as the target. An example datapoint is present-

ed on Figure 10. The position on the rest of the board looks quite random - I 
give an explanation for this in the next chapter.

Importantly, such construction of training data should help the network 
learn about sente moves. In case the previous move in the local sequence 
was sente, the target to the network would almost always be the opponent’s 
answer to that move. It might seem worrisome that in case of gote moves 
also only a move of one color will be presented as a target. However, in such 
situations, the network has no way to guess which player got the next move, 
so to minimize the loss function the network will try to predict roughly 50% 
probability for a move of Black, and 50% for a move of White.

In my master’s thesis (Frejlak 2024), I trained a neural network using a bit 
different training data. Most important difference is that in the original ap-

proach, I looked for only one future move for a given local position, and not 
for a full local variation played out in the endgame. This way, I was not able 
to present the network with a local context of a move except for the single 
local position in which the previous move was played. 
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Figure 10. Example training datapoint. Whole-board position with a local 
sequence of length 2 is presented to the network. The move with an exclama-

tion mark is the target.

4. Data augmentation and sampling 

Data augmentation is a common procedure in deep learning aimed at 
making the model more robust. Oftentimes, a training dataset might be bi-

ased in one way or another. For example, a dataset of photos might consist 
mostly of photos which were shot straight, without rotating the camera. 
Training a network on such a dataset might make the network perform poor-

ly on tilted photos. Therefore, a common augmentation technique is intro-
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ducing random rotations to the input pictures. 
Experimenting with my network, I also noticed that it becomes biased 

toward certain properties of its inputs. I initially trained the network using 
whole-board endgame positions, and the network ended up giving strange 
results for a local position laid on an empty board. To bypass this problem, 
during training I randomly remove stones from the go board outside of the 
current region of interest. I randomly sample the proportion of stones which 
should be removed, and then multiply the input matrices by a binary mask 
sampled randomly according to that proportion. 

I apply augmentation also for the local position masks. I randomly choose 
how broad the neighborhood of the undecided local position should be in-

cluded in the mask, and randomly exclude some of the intersections on the 
mask’s border to introduce some irregularity in data. 

Finally, I calculate some statistics for the created dataset. I noticed that 
most of the undecided positions are small, with only 1, 2, or 3 intersections. 
Also, in most positions the local sequences are short. Many of these posi-

tions are quite uninteresting having e.g. only one neutral point to be taken 
by one of the colors. To not flood my network with such simple tasks, I ran-

domly remove from the dataset a chosen proportion of positions of small size 
and sequence lengths. 

5. Training procedure 

I train the network on a dataset of 4.7 million endgame positions. The 
training ran for around 10 epochs which took around 2 days on a laptop with 
NVIDIA RTX3080 graphic card. I start with the learning rate of 1e-3 and 
half it every 10.000 steps. The batch size is 256, so one step corresponds 
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to 256 endgame positions. I reset the training several times, going back to a 
higher learning rate.

As a loss function, I use a cross entropy applied to predicted move prob-

abilities. Preliminary results showed me that the network struggles when 
it comes to predicting that the position is terminal. Therefore, in positions 
where no move should be predicted, I introduce an additional penalty for 
predicting anything else than no move in such positions. I sum up softmaxed 
predictions for all moves, multiply this term by parameter lambda which I 
set to 6, and add it to the cross-entropy loss. 

An important change compared to my master’s thesis is not penalizing 
the network for predicting moves outside of the masked region. I found out 
that the network anyway quickly learns to play moves in the given local po-

sition. Moreover, this way I acquire more freedom in choosing a mask of a 
local position. The mask could be as small as one intersection and still the 
network realizes which local position this intersection points to. It makes 
the program more convenient to use, as the user does not need to necessarily 
mark all intersections which might change ownership. 

6. Calculating temperature 

Having a model which predicts probabilities for local moves, I calculate a 
temperature of a given local position in the following way. 

First, a variation tree is built. The root node corresponds to the initial 
endgame position. Then, for each tree node, child nodes are added based on 
predicted probabilities:

•	 If the probability of no move exceeds 30%, no child nodes are added.
•	 �Otherwise, if the sum of probabilities for moves  of one color exceeds 
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85%, it is judged that we are dealing with sente, and only moves for 
that color are added.

•	 Otherwise, moves for both colors are added.
•	 �For a given color, moves are added if their probability exceeds 30% 

of the total probability for that color. If no move’s probability exceeds 
this threshold, then a single move with the highest probability is 
added.

•	 �As an exception, in the root node always moves for both colors 
are added, no matter the relative sum probabilities of Black’s and 
White’s moves.

Thresholds used during the tree expansion were chosen a posteriori for a 
trained neural network. 

With this tree expansion strategy, the program should find all variations 
following optimal play, provided that the model ’s predictions are close 
enough to perfect. 

The nodes with no children are judged as terminal, and the final local 
result in them is assessed using KataGo’s ownership map. The ownership 
predictions for each intersection are rounded to integers: -1 for White, 0 for 
no ownership, e.g. in seki, 1 for Black. These integers are summed within 
the region marked as the local position, yielding a local score under area 
scoring. 

Having evaluated all leaf nodes in the tree, the results are aggregated, 
using an algorithm developed by Łukasz Lew (Lew and Frejlak, 2024). One 
caveat is that the algorithm requires each node of a tree to either be terminal, 
or to have children of both colors. A question arises what child node should 
be added to the tree, in case when the network predicts that almost certainly 
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the next move will be played by a specific color. Since initially I expected 
such a situation to appear precisely when the previous move played was 
sente, a natural idea was to add an artificial child for a continuation of the 
sente move, with an evaluation very much favoring the player who played 
that move. This way, we would not consider any additional variation on a Go 
board. 

However, this approach fails because the high probability of a specific 
color getting the next move is predicted by the network also in case the next 
move is going to be sente for one of the players. I concluded that there is no 
clean way to establish what artificial child should be added to the tree, as it 
is impossible to distinguish the situation of the next move being sente and 
the previous move being sente by mere looking at the network predictions. 

This led me to another solution. Apart from using thresholds for a usual 
tree expansion, I also ensure that for every position, at least one Black’s and 
one White’s move is considered. However, in case the probability of a given 
color getting the next move is below the chosen threshold, I treat a node af-

ter such a move as terminal and do not consider any further variations after 
it. Instead, I evaluate the expected local score in that node using the KataGo 
ownership map. This solution is not ideal but works in most cases. I offer 
further discussion on this issue in Section VI. 

V. Results 

While the neural network is trained on a large dataset to predict next local 
moves, a real test for my program is how it performs on a harder task: ex-

panding a variation tree to calculate the local temperature. To yield the cor-
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rect results, the neural network predictions need to be quite accurate for ev-

ery position appearing in every local variation. I tested the program on a set 
of actual endgame problems, designed for players learning endgame theory. 
To my best knowledge, my program is the first one in the world designed in 
a way which allows for solving such tasks. 

I took the test set of 100 problems from the GoMagic course called “End-

game for Nerds” (Frejlak 2022). The problems are of varying difficulty, fea-

turing a lot of common endgame positions and guiding the student through 
concepts such as moves with continuation, sente and ko.  

My program finds the correct local temperature in 65 out of 100 prob-

lems.

1. Comparison with baseline 

To date, there are no other programs which could be tested on the same 
problem set. To still somehow quantify how good the achieved results are, I 
design two other approaches. 

The first approach does not use the network I trained, and deploys the 
KataGo network instead. As explained before, KataGo is not designed for 
this specific task, but still one can try to get the most out of it by looking for 
moves with highest probability within a local region of the board. There is 
also a natural way of telling a position terminal. In case KataGo predicts ev-

ery intersection to be either Black’s or White’s with high certainty, territory 
borders are most probably fixed, and the tree expansion can stop. 

As KataGo does not predict move probabilities for both colors in a joint 
manner, there is no easy way to tell that certain moves are sente. As ex-

plained in Section III. this leads to a dramatic growth of the tree size, in 
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case the position was not clearly bounded by walls of stones from the very 
beginning. To ensure that calculations end in real time, I limit the length of 
considered variations to 12. Positions after this many moves are treated as 
terminal and evaluated using the ownership map. Then, the local scores are 
aggregated using the same algorithm as in my original program. 

With this approach, the program correctly solves 14 out of 100 problems. 
For the sake of another comparison, I test one more approach. In each of 

the problems, I put by hand all correct local variations. This way, I am sim-

ulating how an ideal trained neural network should guide the construction 
of the variation tree. Local scores in terminal positions are calculated from 
KataGo’s ownership maps, and aggregated with the same algorithm ground-

ed in CGT. Correct answers are obtained for 97 out of 100 problems. 
This experiment shows that the program design is not flawless. Even if 

the neural network worked perfectly, the program would still fail to always 
find the correct local temperature. On the other hand, 97% accuracy is very 
high, showing that there is still a lot of room for the network to grow. 

Mistakes in the three problems come from two different sources. In case 
of one problem KataGo’s evaluation for a non-terminal position is at fault. I 
evaluate a non-terminal position if the network assigned a very low proba-

bility to moves of one color. In case this was a sente move, the continuation 
of that move should lead to a position significantly better for the player - 
this should be then reflected in KataGo’s evaluation, and lead to a correct 
calculation of the temperature-finding algorithm, which will disregard the 
node corresponding to that move. However, in case of the problem shown 
on Figure 11, not only White’s move at 1 is sente but also their continuation 
is sente - with a much larger continuation as it threatens to kill Black’s cor-

ner. This leads KataGo network to predict that Black will surely respond to 
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White’s 2, and this certainty is also reflected in its ownership map, yielding 
too high local score for Black, which hinders correct temperature calcula-

tions. While this situation appears only in one of the 100 problems, it shows 
an inherent limitation to the approach I chose in my program.

Figure 11. Failure of the procedure of evaluating  
continuations of sente moves.

Two more mistakes come from incorrect assessments of final scores in 
terminal positions. Usually, KataGo’s assessments of intersection owner-

ships for terminal positions are highly accurate. However, in the presented 
problems, secure territories are not marked very clearly. Apparently, KataGo 
sometimes still sees a weakness in a player’s shape and does not judge some 
intersection as secure territory, subject to chosen threshold.

2. Qualitative analysis 
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I inspected variation trees built by my program both in problems which it 
solved correctly and in which it made mistakes. The program learned very 
well to recognize sente moves. Also, the presence of various types of kos in 
the problems did not pose difficulties to the program3). 

Many of the program’s mistakes come from the network not knowing cer-

tain endgame techniques. For example, in the problem shown on Figure 12, 
the network does not realize that White’s best move is a monkey jump. Only 
variations after White’s turn and White’s knight’s move are added to the tree, 
and consequently the local temperature is estimated as 7 points, and not 9 
points which would be the correct answer.

Figure 12. Predictions for best local moves of White in percentages. The net-
work assigns only a 7% probability to the monkey jump.

3) �In CGT analysis, kos are generally quite problematic. There are lots of unusual 
types of kos, some of which are difficult to mathematically formalize. However, 
most kos appearing in practice in Go endgames, fall into the category of placid kos, 
which can be successfully analyzed using classical CGT tools.
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Figure 13. A position in which the network for an unknown reason predicts 
much higher probability for White’s moves. (Screenshot from a GUI I devel-

oped for my program)

Another type of mistakes appears in situations where no more moves of 
value higher than 0 points are left, but the position still needs to be fixed 
by playing moves threatening a large continuation. An example position is 
shown on Figure 13. In such positions the network should ideally predict 
50% chances of playing for each of the colors. However, I observe that in 
practice the network predicts a much higher probability for the player who 
can threaten saving their dead stones. In practice, the program treats the 
position as if it contained a sente move, expanding the variation after the 
other player’s move only to the depth of 1. This sometimes leads to incorrect 
calculations, if the KataGo’s evaluation of a non-terminal position is inaccu-

rate.
It is difficult for me to understand why the network learned to assess such 

a high probability for one of the colors. Intuitively, I would rather expect that 
in the training data, analogous positions should have both continuations by 
Black and by White.
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VI. Future work

There are several areas in which one could seek to improve my program. 
First of all, taking a stronger pre-trained model for fine-tuning might lead 
to better performance. The network which I used was pre-trained only on a 
9x9 board. In consequence, it might have not learned about some common 
tesujis met in 19x19 endgames, and so it might be difficult to master them 
during fine-tuning. There are multiple open-source programs which could 
be used, such as LeelaZero, ELF OpenGo, or KataGo. 

Another direction might be trying to improve the quality of the training 
data. Visual inspection of training data currently fed into the network leads 
me to suspicion, that the proportion of interesting endgame positions, includ-

ing tesujis such as a monkey jump, is too low, with the majority of positions 
featuring quite obvious play such as 1-point moves or filling neutral points. 
I tried to overcome this issue by keeping only a small proportion of positions 
in which the number of undecided intersections or the number of moves left 
in the local variation was low. However, one could still think of many other 
heuristics for detecting which training examples might be more educative for 
the network. For example, one could try to estimate the local temperatures 
in sampled positions, e.g. reusing the already trained network (but probably 
without expanding a variation tree too much, as it is computationally expen-

sive). 

Finally, one can try to alter the architectural choices taken in this work. 
One idea which is certainly worth trying is teaching the network the dis-

tinction between sente moves and answers to sente moves. In both of these 
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situations a probability of getting the next move should be higher for one 
of the colors. However, as discussed in Section IV, it is problematic for the 
temperature calculation algorithm if these two cases are not distinguished 
by the network. To tackle this problem, one could make the network predict 
another piece of information, namely whether the next local move is likely to 
be played immediately after the previous one. This should hold for answers 
to sente moves, but generally should not hold for sente moves themselves. 

Having such additional information about sente moves predicted by the 
network, one could simplify the tree expansion process. If the next move is 
judged to be an answer to a sente move, then one could add an artificial node 
to the variation tree with evaluation strongly favoring the player who has 
just played. There is no need to consider which specific move is the correct 
continuation and get a KataGo evaluation for it, despite the position not be-

ing terminal. On the other hand, if the next move is judged to be sente, then 
there is no harm in normally expanding the tree for the opponent’s reverse 
sente move. The tree will not grow too much as we should not run into the 
trap of entering a secure territory described in Section III. Instead, such an 
expansion can help to confirm or refute the initial assumption of the move 
being a reverse sente. 

Conclusion 

The solution developed in my master’s thesis and improved for this work is 
the first program in the world that facilitates CGT analysis of local endgame 
positions taken from real games. The program correctly estimates the local 
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temperature in 65 out of 100 endgame problems designed for Go practi-

tioners. While this number is much higher than what one could get by using 
existing Go-playing programs such as KataGo, there is still a lot of space for 
improvement. Importantly, the program should still be improved before it 
can be used as a teaching tool for Go players.
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